
Pl4Xml – An Swi–Prolog Library

for Xml Data Management

(Manual)

Dietmar Seipel

University of Würzburg, Department of Computer Science

Am Hubland, D – 97074 Würzburg, Germany

seipel@informatik.uni-wuerzburg.de

September 11, 2007

Abstract

Pl4Xml is a declarative Xml query, transformation and update lan-

guage, which is implemented in and fully interleaved with the logic pro-

gramming environment of Swi–Prolog.

We will introduce two Prolog document object models for Xml doc-

uments: the field notation, which represents Xml data as terms, and the

graph notation, which represents Xml data as facts. Both simplify deal-

ing with semi–structured data; instead of accessing a component by its

argument position it becomes possible to access it by its attribute name,

or to access nested components by a complex path or tree expression.

We will report about several practical case studies that we have done

for extracting and transforming information from Xml documents in a

declarative style.

Keywords.
Xml, semi–structured data, Prolog, query, update, and transformation lan-
guages, deductive databases

1



Contents

1 Introduction 3

2 The Architecture of Pl4Xml 4

3 Xml Objects as Prolog Terms 5

3.1 Xml Objects in Field Notation . . . . . . . . . . . . . . . . . . . 5

3.2 Access to Components in Field Notation . . . . . . . . . . . . . . 7

3.3 Loading and Saving Xml Documents . . . . . . . . . . . . . . . . 8

4 The Libraries FnPath and FnSelect 10

4.1 Location, Assignment, and Fn Trees . . . . . . . . . . . . . . . . 10

4.2 Evaluation of FnQuery Atoms in Prolog . . . . . . . . . . . . . 12

4.3 More General Location Steps . . . . . . . . . . . . . . . . . . . . 14

4.4 Related Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5 Xml Objects as Prolog Facts 17

5.1 Xml Objects in Graph Notation . . . . . . . . . . . . . . . . . . 17

5.2 Additional Axes in Location Steps . . . . . . . . . . . . . . . . . 19

5.3 Queries to the Graph Notation . . . . . . . . . . . . . . . . . . . 20

6 The Library FnTransform 20

6.1 FnTransform on Field Notation . . . . . . . . . . . . . . . . . . . 20

6.2 FnTransform on Graph Notation . . . . . . . . . . . . . . . . . . 22

7 The Library FnUpdate 24

7.1 Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

7.2 Insertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7.3 Deletion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

8 Case Studies 29

8.1 Extracting Stock Data from Web Pages . . . . . . . . . . . . . . 30

8.2 Jean Paul . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

9 Conclusions and Future Work 34

2



1 Introduction

Xml is a well–known, self–describing data format, and it is often considered
as the future of the World Wide Web. Xml data can be considered as semi–
structured data, since their schema or DTD might be unknown or frequently
changing [19].

Query languages for object–oriented databases have been investigated since
about 15 years, cf. the query language Oql of O2 [2], the language Lorel [1],
and the logic–based language F–Logic [11] and its successor languages. Since the
emergence of Xml the goal was to adapt these query languages to the processing
Xml data, cf. Xql (1998), XmlQl (1998), XQuery (also known as Quilt or Xml

Query), the extended style sheet language Xsl (1999), and the pattern–based
language Xcerpt [6]. Many of the Xml query languages including the emerging
W3C standard XQuery [23] are based on the path language XPath (1999). Also
specialized Xml databases such as Tamino have been developed. Recently, the
goal of the Semantic Web [5] is to add a logic component with rules for reasoning
about ontological Xml data on the Web.

The logic programming language Prolog can handle symbolic computa-
tions on complex, tree–structured objects nicely, and it can be used for reasoning
about semi–structured data. In combination with the Xml query, transforma-
tion and update language Pl4Xml, Prolog is a powerful environment for
handling Xml–based applications. Pl4Xml integrates the Xml transformation
and update language with the query language into a single framework, such
that an interleaved processing – including a combined backtracking – becomes
possible.

Structure of the Manual

The rest of this manual is organized as follows: The overall architecture of
Pl4Xml is described in Section 2. In Section 3 we will define the field notation
for representing Xml data as terms in a logic programming environment, and we
will show how these data can be accessed nicely. In Section 4 the library FnPath
for processing data in field notation is introduced, and the semantics of FnPath
is described briefly. Section 5 defines the graph notation for representing Xml

data as Prolog facts, as well as some further operations for accessing the
data. The Sections 6 and 7 present the libraries FnTransform and FnUpdate for
transforming and updating, respectively, Xml data. Some practical applications
of Pl4Xml are reported in Section 8; in particular, it is shown how stock data
can be extracted from Html files, and how linguistic Xml files can be enriched
(annotated) by more semantical structure.

3



2 The Architecture of Pl4Xml

Pl4Xml is a Prolog library for querying, transforming, and updating Xml

data, which is fully interleaved with the Prolog programming language. As
such it combines the functionality of Xml tools such as XQuery, Xslt, and
XUpdate with the programming language Prolog. The acronym Pl4Xml

can be read as

• programming language for Xml or

• Prolog for Xml.

Pl4Xml has been used in several projects for processing Xml documents, but
it can also simply be used as a data structure with access operations for complex
objects in Prolog applications.

Document Object Models / Data Structures. Pl4Xml uses two alter-
native representations for Xml data in Prolog, the field notation and the
graph notation.

Components. Pl4Xml consists of the two modules fn query and gn query

within the unit xml of the DisLog Developers’ Kit (DDK) [14]. The DDK
is a comprehensive collection of Prolog libraries including disjunctive logic
programming and deductive database features.

fn query consists of the following components, which form the sub–language
FnQuery.

• the path language FnPath,

• the selection language FnSelect,

• the transformation language FnTransform, and

• the update language FnUpdate.

The path language FnPath is used in all the other components. FnPath,
FnSelect and FnTransform can operate both on field notation and on graph
notation. FnUpdate – so far – can only operate on field notation. gn query

contains the predicates for converting between field notation and graph notation.

For handling basic data types such as strings and names various other Pro-

log predicates from the DDK are used, especially from the module basic alge-

bra/basics.

Usage. The Pl4Xml library can be used as an application programming in-
terface (API) for processing Xml data within arbitray Prolog applications.
Moreover, there exists a graphical user interface (GUI) for the rapid prototyping
of small applications.

4



3 Xml Objects as Prolog Terms

Syntactically, both Xml and Prolog are based on nested term structures . We
will show how Xml structures can be represented and queried in Prolog. Since
Xml can be used for representing complex objects, cf. [1], this gives us a way
of handling complex objects in Prolog or deductive databases.

Standard Term Representation of Complex Structures. The usual rep-
resentation for relational or semi–structured data in Prolog would be that the
relation name becomes a predicate with the components of a tuple as its argu-
ments. E.g., a relation stockwith attributes Index, Wkn, Date, and Value can
be represented by Prolog facts of the form stock(Index,Wkn,Date,Value).
The schema information (i.e., the attribute names) is not stored in the Prolog

facts. There are the following implications of this representation: Firstly, the
selection of attribute values is by argument position rather than by attribute,
which is problematic if there are many arguments. Secondly, the update of
nested term structures is complicated. E.g., the update of components within a
structure Stock, such as the assignment Stock.Value := 60, is not possible
without creating a new structure Stock’, because the assignment of variables
is non–destructive in Prolog.

3.1 Xml Objects in Field Notation

Complex Objects in Prolog. We will use association lists for representing
lists of attribute/value pairs, cf. [1]. This data structure is familiar to Lisp

programmers. The following definition of association lists uses the infix operator
“:” for pairing an attribute with its associated value.

Definition 3.1 (Association Lists)

1. If ai and vi (1 ≤ i ≤ n) are Prolog terms, then the ai : vi are associa-
tions, and [a1 : v1, . . . , an : vn] is an association list.

2. Each ai is called an attribute, and vi is called the associated value.

For example, [date:’14.12.2002’, value:’30’] is an association list. Ob-
serve that association lists are Prolog terms themselves; thus, it would be
possible to have nested association lists, where some of the values vi are associ-
ation lists. E.g., [f(1,a):7,b:[c:1]] is an association list with the attributes
f(1, a) and b, and with the corresponding values 7 and [c : 1], respectively.
[c : 1] is itself an association list, wheras 7 is just a Prolog constant.

A complex object with sub–objects that are selected by attributes ai, could
be represented as an association list [a1 : O1, . . . , an : On], where the Oi, 1 ≤ i ≤ n,
are the association lists for the sub–objects. An object without any sub–objects
would then be represented as a Prolog constant.

5



Association lists have got several advantages when compared to ordinary
Prolog facts of the form o(O1, . . . , On): Firstly, the sequence of attribute/value
pairs ai : Oi is arbitrary. Secondly, values Oi can be accessed by attributes
ai rather than by argument positions. Thirdly, the database schema can be
changed at run time. Fourth, null values can be omitted, and new values can
be added at run time.

In the following we will introduce a Prolog representation – called field
notation – of Xml elements that represents the attribute/value pairs and the
sub–elements as association lists, and we will show that Xml elements in field
notation can be queried and modified very elegantly.

Xml Objects in Prolog. The following Xml example shows a database
with information about the charts of the German stock index dax100; each
chart has an identifying attribute wkn (identifier for stock shares; in German:
Wertpapierkennummer) and entries with the attributes date and value:

<stocks index="dax100">

<chart wkn="200400">

<entry date="14.12.2002" value="30"/>

</chart>

<chart wkn="600800">

<entry date="14.12.2002" value="40"/>

<entry date="15.12.2002" value="50"/>

</chart>

</stocks>

An Xml element <T a1 = ”v1” . . . an = ”vn”> . . . </T> with the tag “T” can
be represented as a Prolog term T:As:C, where As = [a1 : v1, . . . , an : vn] is
an association list for the attribute/value pairs and C represents the contents
(i.e., the sub–elements) of O. We call T:As:C an Fn–triple. For example, the
Xml element above can be represented by the following Fn–triple:

stocks:[index:dax100]:[

chart:[wkn:200400]:[

entry:[date:’14.12.2002’, value:30]:[] ],

chart:[wkn:600800]:[

entry:[date:’14.12.2002’, value:40]:[],

entry:[date:’15.12.2002’, value:50]:[] ] ]

Definition 3.2 (Field Notation)

1. If T and C are Prolog terms and As is an association list, then the
Prolog term O = T:As:C is called an Fn–triple with the tag T and the
contents C.

6



• If As = [a1 : v1, . . . , an : vn], then each ai is called an attribute of O
and vi is called the corresponding value.

• If As = [ ], then O can alternatively be represented as T : C.

2. Given an Fn–triple O = T:As:C, such that C = [c1, . . . , cm] is a list of
Fn–triples, then each ci is called a sub–element of O.

Observe, that the operator “:” is right–associative in Pl4Xml. Thus, an
Fn–triple is perceived as a pair T : (As : C), and a list of Fn–triples can be
considered as an association list with the selectors T.

The call fn_item_parse(I1, I2) normalizes the two forms of Fn–triples to
the longer form: it transforms an abbreviated Fn–triple I1 = T:C to the long
form I2 = T:[]:C, and it leaves T : As : C unchanged.

3.2 Access to Components in Field Notation

$Stocks. In the following we will use the abbreviation $Stocks$ for a fre-
quently needed Fn–triple containing one stock chart with one entry, which is
given by the following Xml element:

<stocks index="dax100">

<chart wkn="200400">

<entry date="14.12.2002" value="30"/>

</chart>

</stocks>

Selection. Given an Fn–triple O and two Prolog terms A and X. The binary
infix–predicate “:=” allows for accessing the sub–elements and the attribute val-
ues of O, which corresponds to the child–axis and the attribute–axis , respectively,
of XPath.

• The call X := O/A computes all most general substitutions θ, such that Xθ
is a sub–element with the tag Aθ of Oθ.

• Equivalently, it is possible to write X := O^A.

• The call X := O@A computes all most general substitutions θ, such that Xθ
is the value of the attribute Aθ of Oθ.

This reminds of the evaluation of arithmetic expressions in Prolog, X is 3∗(4+
5), where “is” is an infix–predicate symbol with two arguments, which evaluates
the arithmetic term 3 ∗ (4+ 5) and assigns the result to the first argument “X”.

The predicate “:=” can handle complex path expressions for selecting sub–
components. E.g., we get:

?- X := $Stocks/chart, Y := $Stocks@index,

Z := $Stocks/chart@wkn.

7



X = chart:[wkn:200400]:[

entry:[date:’14.12.2002’, value:30]:[]],

Y = dax100,

Z = 200400

In pure Prolog the selection Z := $Stocks/chart@wkn with a complex path
expression would look much more complicated:

$Stocks = _:_:C,

member(chart:As:_, C),

member(wkn:Z, As).

It is also possible to use variables as selectors. Then, all possible selection
paths (using child or attribute selectors) can be computed:

?- X := $Stocks/chart/S.

X = entry:[date:’14.12.2002’, value:30]:[], S = entry ;

X = ’14.12.2002’, S = entry@date ;

X = 30, S = entry@value

Assignment. We can assign new values to attributes or elements. The follow-
ing statement updates the value attributes of the entry elements of a selected
chart element:

?- X := $Stocks/chart*[/entry@value:40].

X = chart:[wkn:200400]:[

entry:[date:’14.12.2002’, value:40]:[]].

X is obtained by first selecting the sub–element with the tag chart, and by then
modifying the value attribute of the embedded entry–element. Observe, that
we have to create a new object X holding the result, since in Prolog there
exists no destructive assignment.

The following statement inserts a new sub–element into the selected chart

element:

?- X := $Stocks/chart*[

/entry:[date:’17.12.2002’, value:60]:[]].

X = chart:[wkn:200400]:[

entry:[date:’14.12.2002’, value:30]:[],

entry:[date:’17.12.2002’, value:60]:[]]

3.3 Loading and Saving Xml Documents

We use the Sgml/Xml parser sgml2pl of Swi–Prolog [22] for loading Xml

documents. sgml2pl represents Xml elements as terms of the form

8



element(Tag, Attributes, Content),

where Tag is the tag of the element, Attributes is the list of attribute/value
assignments A=V, and Content is the list of sub–elements in sgml2pl represen-
tation. In Pl4Xml, we shorten this to the term Tag:As:C, where As is the
corresponding list of attribute/value pairs A:V and C is the list of sub–elements
in field notation, which corresponds to Content; I.e., we change “=” to “:” and
we leave out the functor “element”; all terms of the sgml2pl representation with
other functors are left unchanged.

Loading. We can load an Xml document into the system using the predicate
dread/3. The call

?- dread(xml, ’stocks.xml’, Stocks_2).

Stocks_2 = [

stocks:[index:dax100]:[

chart:[wkn:200400]:[...],

chart:[wkn:600800]:[...] ] ]

reads the file stocks.xml into an FN–list consisting of exactly one Fn–triple.

If the file stocks.xml contains processing instructions or more than one root
element (the latter is allowed in FnQuery, although is is not allowed in Xml),
then the result argument of dread/3 is a list containing these items.

Saving. We can save an Fn–triple as an Xml document using the predicates
dwrite/2 and dwrite/3. The call

?- dwrite(xml, $Stocks).

writes the Fn–triple $Stocks to the console, and the call

?- dwrite(xml, ’stocks_2.xml’, $Stocks).

writes it into the Xml file stocks 2.xml; the file is started by the Xml prolog
<?xml version=’1.0’ encoding=’ISO-8859-1’ ?>. The predicate dwrite/2

does not print this prolog.

Observe, that – unlike dread, which returns an Fn–list – dwrite usually
will be called with an Fn–triple. Calling dwrite with an Fn–list writes the
Fn–triples embraced by the tags <> and </>:

?- dwrite(xml, [a:[b:1]:[], c:[]]).

<>

<a b="1"/>

<c/>

</>

The same is obtained from the call dwrite(xml, ’’:[a:[b:1]:[], c:[]]).

9



Figure 1: A Location Path in Prolog

4 The Libraries FnPath and FnSelect

In this section we will describe the basic methods of FnSelect for the selection of
sub–elements and the update of Fn–triples using complex location expressions,
which we call location trees and assignment trees in FnPath. More advanced
access methods, such as the selection/deletion of all elements/attributes of a
certain pattern, the transformation of sub–elements according to substitution
rules (FnTransform, cf. Section 5), and the update (insertion, deletion) of sub–
elements (FnUpdate, cf. Section 6) will be described in further sections.

4.1 Location, Assignment, and Fn Trees

Location paths and location trees are defined inductively as terms over Prolog

terms and some other characters.

Definition 4.1 (Location Paths and Location Trees)

1. If t is a Prolog term, then /t, ^t, and @t are location steps.

2. If πi (1 ≤ i ≤ n) are location steps, then π1 . . . πn is a location path.

3. Every location path is a location tree. If π is a location path and τi

(1 ≤ i ≤ n) are location trees, then π - [τ1, . . . , τn] is a location tree.

For example, /chart-[@wkn,/entry-[@date,@value]] is a location tree. If O
is an Fn–triple and τ is a location tree, then O τ can be considered as a Prolog

term. In a location path – depending on their position – the functors /, ∧ , and
@ are either perceived as right–associative, binary infix functors or as unary
prefix functors with suitable precedences and types (cf. Section 4.2). E.g., the
location path /chart/entry@date is parsed into the Prolog term shown in
Figure 1.

A location path is applied to an Fn–triple O by iteratively applying the
location steps, and a location tree π - [τ1, . . . , τn] is applied by first applying

10



π to O and by then applying the location trees τi in parallel. Thus, a query
with multiple location paths returns a list of objects, namely one object for each
selector:

?- X := $Stocks/chart-[@wkn, /entry-[@date, @value]].

X = [200400, [’14.12.2002’, 30]].

If a path contains variable symbols, then all instances of the path which are an
allowed path in the query object can be generated on backtracking:

?- X := $Stocks/chart/entry@Path.

X = ’14.12.2002’, Path = date ;

X = 30, Path = value

?- 30 := $Stocks/Path.

Path = chart/entry@value

If a location tree τ is not compatible with an Fn–triple O, then O τ does not
return any results. E.g., τ =/entry is not compatible with our complex object,
since O does not contain any (direct) sub–elements with the tag entry. Obvi-
ously, a path π containing two subsequent functors @, such as, e.g., @a@b, is not
compatible with Xml objects O in field notation, since Xml attributes cannot
have a complex structure.

Definition 4.2 (Association Trees, Assignment Trees)
Given a location path π0.

1. If I is an Fn–triple, then π0/I is an association path.

2. If A : V is an association, then π0 @ A : V is an association path.

3. Every association path is also an association tree.
If all τi (1 ≤ i ≤ n) are association trees, then

• π0 - [τ1, . . . , τn] is an association tree, and

• π0 ∗ [τ1, . . . , τn] is an assignment tree.

An assignment tree π0∗ [τ1, . . . , τn] selects a sub–element of an Fn–triple O using
π0, and then it iteratively applies the association trees τi to change certain
attributes or elements. It is possible to change components at arbitrary depth
in the document.

?- X := $Stocks/chart*[/entry@value:40].

X = chart:[wkn:200400]:[

entry:[date:’14.12.2002’, value:40]:[]].

11



@ index /chart/entry

@value

∗

40

Figure 2: An FN–Tree

Location trees and assignment trees can be combined within FN–trees , which
form the basis for FnQuery atoms.

Definition 4.3 (FN–Trees, FN–Query Atoms)

1. Both location trees and assignment trees are FN–trees. If π0 is a path and
τi (1 ≤ i ≤ n) are FN–trees, then π0 - [τ1, . . . , τn] is an FN–tree.

2. If O is an Fn–triple, τ is an FN–tree, and X is a Prolog term, then O τ
is an FnQuery term and X := O τ is an FnQuery atom.

An FN–tree represents a labelled tree, where each edge is labelled by a path.
The nodes can be labelled by ∗ or by a Prolog term. Each path from the root
to a leaf contains at most one node that is labelled by ∗; in this case the leaf is
labelled by a Prolog term. The FN–tree that is used in the following example
is given in Figure 2:

?- Y := $Stocks-[@index, /chart/entry*[@value:40]].

Y = [dax100, entry:[date:’14.12.2002’,value:40]:[]].

4.2 Evaluation of FnQuery Atoms in Prolog

We have implemented a Prolog engine for evaluating FnQuery atoms, cf. [14].
The operators /, ∧ , and @ are defined as right–associative, binary infix operators
with the same precedence, and at the same time as unary prefix operators using
the call op(Precedence,Type,Name) for the following parameters:

Name Precedence Type

/ 200 xfy
/ 100 fx
^ 200 xfy
^ 100 fx
@ 200 xfy
@ 100 fx

12



Simplified Notations. A location tree or an association tree π - [◦τ1, . . . , ◦τn]

where all ◦τi start with the same selector ◦ ∈ { /, @ }, can equivalently be rep-
resented as π ◦ [τ1, . . . , τn]. An assignment tree π ∗ [/τ1, . . . , /τn] where all
association trees start with /, is represented as π ∗ [τ1, . . . , τn].

For example, O-[/a,/c] can be represented as O/[a,c], and O*[/a:5,/c:6]

can be represented as O*[a:5,c:6].

$Stocks 2. In the following we will use the abbreviation $Stocks_2$ for a
frequently needed Fn–triple containing two stock charts, which is given by the
following Xml element:

<stocks index="dax100">

<chart wkn="200400">

<entry date="14.12.2002" value="30"/>

</chart>

<chart wkn="600800">

<entry date="14.12.2002" value="40"/>

<entry date="15.12.2002" value="50"/>

</chart>

</stocks>

Aggregation Operators and Embedded Computations. We can handle
query terms X := O− agg(X1, . . . , Xn, π) with aggregation goals with parameters
X1, . . . , Xn, such as O-average(/a), O-sum(/a), and O-nth(2, /a). Here, the
path π is first applied to the object O by calling Y := O π; we find all results
by findall( Y, Y := O π, Ys ). Then the aggregate X is obtained from the
list Ys of all results Y of this call by calling agg(X1, . . . , Xn, Ys, X). Arbitrary
user–defined Prolog predicates can be used for agg. For example, the query
X := O-agg(/a) returns the list of all a sub–elements of O, if agg is defined by
the fact agg(Ys, Ys).

The following query returns the average of all value–attributes within the
second chart element:

?- X := $Stocks_2-nth(2, /chart)-average(/entry@value).

X = 45

First, the second chart element is selected; then the average over all value
attributes of its entry elements is computed.

Finally, arbitrary embedded computations – such as computing the changes
from one day to the next day by a user–defined function changes – can be
started while evaluating a query term using the connnective “--”:

?- X := $Stocks_2--changes, dwrite(xml, X).

<stocks index="dax100">

13



<chart wkn="200400"/>

<chart wkn="600800">

<entry from="14.12.2002" to="15.12.2002"

change="+25%"/>

</chart>

</stocks>

4.3 More General Location Steps

A location path is a sequence π = /s1/s2/ . . . /sn of location steps si. In general
a location step in Pl4Xml can look as follows:

Axis::Node_Test::Predicates

Axis::Node_Test

The pair Axis::Node_Test is used for selecting elements or attributes, and the
list Predicates of conditions is used for testing the selected object. Analogously
to XPath, the are suitable abbreviations for the axes child and attribute

in a path: /child::T can be abbreviated to /T, and /attribute::A can be
abbreviated to @A.1 For location trees and assigment trees, the notations in the
general from will be given later in this section. The general form can be used
within the earlier form. Finally, note that it is always possible to write “∧”
instead of “/”.

For example, the following call selects the date of all entries with a value
greater than 45 (Predicates = [@value=V, V > 45] in the first location step)
from the chart with the wkn given by 600800 (Predicates = [@wkn=600800]

in the second location step):

?- X := $Stocks_2/chart::[@wkn=600800]

/entry::[@value=V, V > 45]@date.

X = ’15.12.2002’,

V = 50

The Fn–triple $Stocks_2 has been defined in Section 4.2. As a side effect, also
the corresponding values V are returned.

Axes and Node Tests. In general the following pairs are possible in Pl4Xml:
T, A, and N can be any Prolog term; in reasonable situations, T, A, and N will
be variables, ’*’, or a tag name for T, an attribute for A, and a number for N,
respectively. ’*’ stands for a wild card variable _.

• child::T selects a child element with the tag T;

1Earlier, /T and @A have been called location steps, although they are abbreviations for the

separator / together with a location step si.

14



• attribute::A selects the value of an attribute A;

• tag::’*’ selects the tag name of the considered Fn–triple;

• attributes::’*’ selects the attributes of the considered Fn–triple;

• content::’*’ selects the content of the considered Fn–triple;

• nth_child::N selects the N–th child element of the considered Fn–triple;

• self::’*’ selects the considered Fn–triple itself;

• descendent::T selects a descendent element of the considered Fn–triple
with the tag T;

• descendent_or_self::T selects a descendent element of the considered
Fn–triple the tag T, or the Fn–triple itself, if it has the tag T.

The backward axes, such as parent, are not possible for field notation, since an
Fn–triple does not have a reference to its parent. In Section 5, we will introduce
another representation of Xml, called graph notation, which will allow all axes
of XPath.

The following example selects some components of a stock element:

?- Chart := $Stocks_2/chart::[@wkn=600800],

T := Chart/tag::’*’,

As := Chart/attributes::’*’,

C := Chart/content::’*’,

Child := Chart/nth_child::2,

Self := Chart/self::’*’.

Chart = chart:[wkn:600800]:[...],

T = chart,

As = [wkn:600800],

C = [ entry:[date:’14.12.2002’, value:40]:[],

entry:[date:’15.12.2002’, value:50]:[] ],

Child = entry:[date:’15.12.2002’, value:50]:[],

Self = chart:[wkn:600800]:[...]

Further Long Forms. A location or association tree π0--[τ1, . . . , τn] can
be written as π0/branch::[τ1, . . . , τn], and an assignment tree π0∗[τ1, . . . , τn]

as π0/update::[τ1, . . . , τn].

4.4 Related Concepts

We will briefly relate FnPath to two representative concepts for dealing with
Xml data by an example: XQuery and F–Logic. FnPath differs from XQuery

15



and from F–Logic in the fact that FnPath is fully interleaved with Prolog,
in the built–predicates, which are allowed in FN–trees, and in the library of
built–in predicates, which we have implemented.

Xml Query. The following Prolog rule uses the features of FnPath for
computing all stock values for a given day Date:

stock(Stocks, Date, entries:[]:Entries) :-

findall( entry:[wkn:Wkn, value:Value]:[],

( Chart := Stocks/chart,

Wkn := Chart@wkn,

Entry := Chart/entry,

Date := Entry@date,

Value := Entry@value ),

Entries ).

It can be applied to the Fn–triple Stocks given in Section 3.1. The correspond-
ing FLWR–expression in Xml Query would look like follows:

<entries>

{ for $Chart in document("http://www.stocks.de")/stocks/chart

let $Wkn = $Chart@wkn

for $Entry in $Chart/entry

let $Value = $Entry@value

where Date = $Entry@date

return <entry wkn="$Wkn" value="$Value"/> }

</entries>

F–Logic. F–Logic is also based on complex, nested structures, such as

stocks[ index -> dax100,

charts --> {

[ wkn -> 200400,

entries --> {

[ date -> ’14.12.2002’, value -> 30 ] } ],

[ wkn -> 600800,

entries --> {

[ date -> ’14.12.2002’, value -> 40 ],

[ date -> ’15.12.2002’, value -> 50 ] } ] } ]

which are called molecules; but a complex object is usually represented by a
collection of molecules. To a large degree the access to components is comparable
to FnPath, but F–Logic does not consider quite as powerful transformation
facilities.

16



5 Xml Objects as Prolog Facts

If we store Xml objects as Prolog facts using an object/relational mapping,
then we can implement the backward axes of XQuery as well.

5.1 Xml Objects in Graph Notation

The graph notation is a relational representation of Xml that is following and
refining a proposal presented in [1], which is based on two relations ref/3 and
val/2.

The GN Database. The GN database can store many Xml elements at the
same time. We refer to the elements I and their descendent elements J by
unique identifiers; father (J) denotes the father of J in I, tag(J) is the tag of J ,
and text(J) is the text of a text element J .

• I is mapped to a fact

reference( I∗, tag(I), I, N ),

where I∗ is an identifier that is not the id of any other element in the
database.

• A non–text element J is mapped to a fact

reference( father(J), tag(J), J, N ).

• For every attribute/value–pair A : V of J we get a fact

attribute(J, A, V ).

• A text element J is mapped to a fact

value( father(J), text(J), N ).

The order of the sub–elements K of a non–text element J is reflected by the num-
bers N in the facts reference(J, , K, N ) and value(J, text(K), N ), which
must all be different. Thus, the stored Xml elements can be reconstructed from
the GN database.

Switching to Graph Notation. We can switch to graph notation by setting
the DisLog variable fn_mode to gn:

?- dislog_variable_set(fn_mode, gn).

Yes

The default for fn_mode is fn for field notation, which is active when the DDK
is started.

17



Conversion between Field and Graph Notation. An Fn–triple in field
notation is stored into the GN database using the predicate fn to gn/2:

?- Item = chart:[wkn:600800]:[

entry:[value:40]:[’Mo’, b:[’Tue’]],

entry:[value:50]:[’We’] ],

fn_to_gn(Item, Id).

Id = ’&2’

The returned identifier ’&2’ refers to the stored Fn–triple. After that the
database contains 8 facts, which can be listed by gn database listing/0:

?- gn_database_listing.

reference(’&1’, chart, ’&2’, 1).

reference(’&2’, entry, ’&3’, 2).

reference(’&3’, b, ’&4’, 4).

reference(’&2’, entry, ’&5’, 6).

attribute(’&2’, wkn, 600800).

attribute(’&3’, value, 40).

attribute(’&5’, value, 50).

value(’&3’, ’Mo’, 3).

value(’&4’, ’Tue’, 5).

value(’&5’, ’We’, 7).

The stored Fn–triple can be reconstructed from its identifier using gn to fn/2:

?- gn_to_fn(’&2’, Item).

Item = chart:[wkn:600800]:[

entry:[value:40]:[’Mo’, b:[’Tue’]],

entry:[value:50]:[’We’]]

The sub–elements of the entry element ’&3’ are reconstructed from the facts
value(’&3’, ’Mo’, 3) and reference(’&3’, b, ’&4’, 4), and they are or-
dered according to the numbers in the last arguments.

Shallow parsing of ’&2’ yields an Fn–triple whose sub–elements are given
by their identifiers:

?- fn_item_parse(’&2’, Item).

Item = chart:[wkn:600800]:[’&3’, ’&4’]

Yes

18



Loading and Saving the GN Database. If the fn_mode is gn, then an item
in graph notation which is referenced by Id can be loaded and saved from and
to a file F, respectively, using the calls

• dread(xml, F, [Id]) and

• dwrite(xml, F, Id).

E.g., the Xml file stocks.xml can be read into graph notation like follows:

?- dread(xml, ’stocks.xml’, [Id]),

dwrite(xml, user, Id).

<stocks index="dax100">

<chart wkn="200400"> ... </chart>

<chart wkn="600800"> ... </chart>

</stocks>

Id = ’&2’

Yes

5.2 Additional Axes in Location Steps

The following additional location steps with backward axes are possible in
GnQuery on graph notation: T can be any Prolog term; in reasonable sit-
uations, T will be a variable, ’*’, or a tag name. ’*’ stands for a wild card
variable _.

• parent::T selects the parent element, if it has the tag T;

• ancestor::T selects an ancestor element with the tag T;

• ancestor_or_self::T selects an ancestor element of the considered Fn–
triple with the tag T or the Fn–triple itself, if its tag is T;

• following_sibling::T selects the following sibling, if it has the tag T;

• preceding_sibling::T selects the preceding sibling, if it has the tag T;

• following::T selects an element with the tag T that is following the
considered Fn–triple in the document order, except the descendents;

• preceding::T selects an element with the tag T that is preceding the
considered Fn–triple in the document order, except the ancestors.

If T is a variable, then the test for the tag name always succeeds, and the tag
name of the selected element is returned as the value of T (unless T is “_”).

19



5.3 Queries to the Graph Notation

In graph notation all axes can be used that have been described for field notation
before, and they have the same meaning.

?- X := ’&2’/entry,

Xs := ’&2’/[ tag::’*’, attributes::’*’, content::’*’,

nth_child::’*’, self::’*’ ].

X = ’&3’,

Xs = [chart, [wkn:600800], [’&3’, ’&5’], ’&3’, ’&2’]

Additionally, the backwards axes, which are all based on parent, can be used.

?- Par := ’&5’/parent::’*’,

Sib := ’&5’/preceding_sibling::T1,

Fol := ’&4’/following::T2.

Par = ’&2’,

Sib = ’&3’, T1 = entry,

Fol = ’&5’, T2 = entry

The b element ’&4’ has two ancestors:

?- Anc := ’&4’/ancestor::T.

Anc = ’&3’, T = entry ;

Anc = ’&2’, T = chart

6 The Library FnTransform

FnTransform can operate both on field and on graph notation. We have devel-
oped a grammar rule formalism similar to, but more powerful than, Xslt.

The available transformation methods are summarized in the call

fn_transform(Options, +X, ?Y)

for various forms of options and data X,Y. The data can be given as items in
field or graph notation, or as files.

6.1 FnTransform on Field Notation

Transformations with Arbitrary Predicates. If Predicate is a binary
predicate or a goal P(A_1,...,A_n) for a predicate P of the arity n + 2, then
the calls

20



fn_transform([item, predicate(Predicate)], +Item_1, -Item_2)

fn_transform([file, predicate(Predicate)], +File_1, +File_2)

recursively transform Xml elements; the transformation starts with the leaf
elements. The first call first transforms the sub–elements I1 of Item_1 to form
new elements I3, and then it calls apply(Predicate, [I3, I2]) to form the
sub–elements I2 of the new Fn–triple Item_2. The second call does the same
for files.

E.g., consider the binary predicate tr/2: the first rule deletes the sub–
elements of chart elements chart:As_1:Es and adds the number of these sub–
elements to the attribute list As_1 to create a new element chart:As_2:[]

without sub–elements; the second rule changes the tag stock to stock_summary;
the third rule is applied for all other elements, and it leaves them unchanged:

tr(chart:As_1:Es, chart:As_2:[]) :-

length(Es, N),

append(As_1, [entries:N], As_2).

tr(stocks:As:Es, stock_summary:As:Es).

tr(X, X).

We can apply tr/2 to the stock data:

?- dread(xml, ’stocks.xml’, [Item_1]),

fn_item_transform(tr, Item_1, Item_2),

dwrite(xml, Item_2).

<stock_summary index="dax100">

<chart wkn="200400" entries="1"/>

<chart wkn="600800" entries="2"/>

</stock_summary>

Transformations with Field Notation Grammars. A field notation gram-
mar (FNG) is defined by rules for the binary, infix predicate --->/2. Given a
file File_S defining --->/2. Then the calls

fn_transform([item, fng(File_S)], +Item_1, -Item_2)

fn_transform([file, fng(File_S)], +File_1, +File_2)

apply --->/2 to an Fn–triple or an Xml file to create a new Fn–triple or Xml

file, respectively. Alternatively, we can write the following for the first call:

Item_2 := Item_1/transform::File_S

E.g., consider the FNG defined in the file stock.fng with the same func-
tionality as the predicate tr/2 from above:

21



chart:As_1:Es ---> chart:As_2:[] :-

length(Es, N),

append(As_1, [entries:N], As_2).

stocks:As:Es ---> stock_summary:As:Es.

X ---> X.

Then the following call transforms the Xml file stocks.xml into another Xml

file stocks_2.xml:

?- fn_transform_xml_file_fng(

’stock.fng’, ’stocks.xml’, ’stocks_2.xml’).

Yes

The new Xml file stocks_2.xml looks as follows:

<?xml version=’1.0’ encoding=’ISO-8859-1’ ?>

<stock_summary index="dax100">

<chart wkn="200400" entries="1"/>

<chart wkn="600800" entries="2"/>

</stock_summary>

Deleting Elements with Field Notation Grammars. An FNG rule of
the form “T:As:Es ---> ’’” will delete all elements with the tag T from the
Xml document. In fact, these elements are replaced by “’’”.

Transformations in Location Tree Expressions. For embedding a gram-
mar rule transformation of FnTransform into the path expressions of Pl4Xml,
a grammar given in a file File S can be applied to an Fn item using the following
call, which denotes the application as a location step with the axis transform

and the node test File S:

Item_2 := Item_1/transform::File_S

6.2 FnTransform on Graph Notation

Field Notation grammars can also be applied to Xml elements in graph notation.
Both forward and backward axes can be used for selecting and updating sub–
items.

In rule heads of grammar rules for field notation it is convenient to use the
field notation for splitting an Fn–triple into its components. The rule heads
of grammar rules for graph notation should, however, contain variables rather
than Fn–triples.

22



Comparison of Siblings. In the following, extended Xml document we want
to mark all entry elements by the percentage of change in the value attribute
compared to the preceding entry element (of the same chart):

<stocks index="dax100">

<chart wkn="200400">

<entry date="14.12.2002" value="30"/>

</chart>

<chart wkn="600800">

<entry date="14.12.2002" value="40"/>

<entry date="15.12.2002" value="50"/>

<entry date="16.12.2002" value="60"/>

<entry date="17.12.2002" value="30"/>

</chart>

</stocks>

This can be done very elegantly using an FNG if the document is stored in
graph notation in the internal Prolog database. Then, the preceding entry

element can be found using the backward axis preceding sibling:

:- dislog_variable_set(fn_mode, gn).

Entry ---> Entry :-

entry := Entry/tag::’*’,

B := Entry@value,

A := Entry/preceding_sibling::’*’@value,

compute_percent(A, B, C),

Entry := Entry*[@change:C].

X ---> X.

compute_percent(A, B, C) :-

atom_number(A, X), atom_number(B, Y),

Z is 100 * (Y - X)/X,

( Z >= 0, concat([’+’, Z, ’%’], C)

; concat(Z, ’%’, C) ).

The second, third, and fourth entry element of the second chart are marked by a
corresponding change–attribute by the assignment expression “*[@change:C]”:

<stocks index="dax100">

<chart wkn="200400">

<entry date="14.12.2002" value="30"/>

</chart>

<chart wkn="600800">

<entry date="14.12.2002" value="40"/>

<entry date="15.12.2002" value="50" change="+25%"/>

<entry date="16.12.2002" value="60" change="+20%"/>

23



<entry date="17.12.2002" value="30" change="-50%"/>

</chart>

</stocks>

The same marking of the entry elements could also be done – less elegantly –
by traversing the list of sub–elements of each chart element.

7 The Library FnUpdate

This very powerful library it is more complicated to use than FnPath, FnSelect
and FnTransform. We will describe it mainly by examples. Currently, FnUpdate
only works on field notation.

We will show how to apply update operations to the following stock docu-
ment:

<stocks index="dax100">

<chart wkn="200400">

<entry date="14.12.2002" value="30"/>

</chart>

<chart wkn="600800">

<entry date="14.12.2002" value="40"/>

<entry date="15.12.2002" value="50"/>

</chart>

</stocks>

We will refer to the field notation for this document by $Stocks_2. For a call
“X := $Stocks_2 ...” we will list the answers X in Xml representation. Each
answer becomes a separate Xml element preceeded by a number.

Update Steps. We allow for update steps of the following forms:

update::Association_Trees

insert::Association_Trees

delete::Association_Trees

They can be abbreviated as follows:

• /update::Association Trees becomes ∗ Association Trees,

• /insert::Association Trees becomes <+> Association Trees,

• /delete::Association Trees becomes <-> Association Trees.

24



7.1 Update

Updates in Arbitray Chart Element. The following query selects a chart
and modifies the value in the entry for 14.12.2002 to 60:

?- X := $Stocks_2/chart *

[/entry::[@date=’14.12.2002’]@value:’60’].

1: <chart wkn="200400">

<entry date="14.12.2002" value="60"/>

</chart>

2: <chart wkn="600800">

<entry date="14.12.2002" value="60"/>

<entry date="15.12.2002" value="50"/>

</chart>

The following query selects a chart and modifies the value in all entries with the
value 50 to 60:

?- X := $Stocks_2/chart * [/entry::[@value=’50’]@value:’60’].

1: <chart wkn="200400">

<entry date="14.12.2002" value="30"/>

</chart>

2: <chart wkn="600800">

<entry date="14.12.2002" value="40"/>

<entry date="15.12.2002" value="60"/>

</chart>

Update in Selected Chart Element. The following query selects the chart
with the wkn 600800 and modifies the value in all its entries to 60:

?- X := $Stocks_2/chart::[@wkn=’600800’] *

[/entry@value:’60’].

1: <chart wkn="600800">

<entry date="14.12.2002" value="60"/>

<entry date="15.12.2002" value="60"/>

</chart>

Update with Embedded Computation. The following query selects a
chart and increases the value in all its entries by 1. This is done by select-
ing the attribute value V and by then adding 1 by add_to_atom to obtain the
resulting value W:

?- X := $Stocks_2/chart * [

25



/entry::[@value=V, add_to_atom(V, ’1’, W)]@value:W].

1: <chart wkn="200400">

<entry date="14.12.2002" value="31"/>

</chart>

2: <chart wkn="600800">

<entry date="14.12.2002" value="41"/>

<entry date="15.12.2002" value="51"/>

</chart>

Updates in all Chart Elements. The following query modifies the values
in all entries of all chart elements of 14.12.2002 to 60:

?- X := $Stocks_2 *

[/chart/entry::[@date=’14.12.2002’]@value:’60’].

1: <stocks index="dax100">

<chart wkn="200400">

<entry date="14.12.2002" value="60"/>

</chart>

<chart wkn="600800">

<entry date="14.12.2002" value="60"/>

<entry date="15.12.2002" value="50"/>

</chart>

</stocks>

The following query adds the attribute assignment time="10:00" to all entries
of all chart elements of 14.12.2002:

?- X := $Stocks_2 *

[/chart/entry::[@date=’14.12.2002’]@time:’10:00’].

1: <stocks index="dax100">

<chart wkn="200400">

<entry date="14.12.2002" time="10:00" value="30"/>

</chart>

<chart wkn="600800">

<entry date="14.12.2002" time="10:00" value="40"/>

<entry date="15.12.2002" value="50"/>

</chart>

</stocks>

Adding Sub–Elements. The following query adds a sub–element of the form
<time>10:00</time> to all entries of all chart elements of 14.12.2002:

?- X := $Stocks_2 *

26



[/chart/entry::[@date=’14.12.2002’]/time:[’10:00’]].

1: <stocks index="dax100">

<chart wkn="200400">

<entry date="14.12.2002" value="30">

<time>10:00</time>

</entry>

</chart>

<chart wkn="600800">

<entry date="14.12.2002" value="40">

<time>10:00</time>

</entry>

<entry date="15.12.2002" value="50"/>

</chart>

</stocks>

The following query adds a sub–element with the tag <time_with_offset> to
all entries of all chart elements of 14.12.2002:

?- X := $Stocks_2 * [/chart/entry::[@date=’14.12.2002’]

/time_with_offset:[time:[offset:’+01:00’]:[’10:00’]]].

1: <stocks index="dax100">

<chart wkn="200400">

<entry date="14.12.2002" value="30">

<time_with_offset>

<time offset="+01:00">10:00</time>

</time_with_offset>

</entry>

</chart>

<chart wkn="600800">

<entry date="14.12.2002" value="40">

<time_with_offset>

<time offset="+01:00">10:00</time>

</time_with_offset>

</entry>

<entry date="15.12.2002" value="50"/>

</chart>

</stocks>

The following query adds a sub–element <time><hour>10:00</hour></time>

to all entries of all chart elements:

?- X := $Stocks_2 * [/chart/entry/time/hour:[’10:00’]].

1: <stocks index="dax100">

<chart wkn="200400">

27



<entry date="14.12.2002" value="30">

<time><hour>10:00</hour></time>

</entry>

</chart>

<chart wkn="600800">

<entry date="14.12.2002" value="40">

<time><hour>10:00</hour></time>

</entry>

<entry date="15.12.2002" value="50">

<time><hour>10:00</hour></time>

</entry>

</chart>

</stocks>

7.2 Insertion

The following query adds a new sub–element <entry date="16.12.2002" .../>

to the chart element with the wkn 200400:

?- X := $Stocks_2 <+> [/chart::[@wkn=’200400’]

/entry:[date:’16.12.2002’, value:’60’]:[]].

1: <stocks index="dax100">

<chart wkn="200400">

<entry date="14.12.2002" value="30"/>

<entry date="16.12.2002" value="60"/>

</chart>

...

</stocks>

In comparison, the following query adds the content [date:16.12.2002, ...]:[]

to the entry element of the chart element with the wkn 200400:

?- X := $Stocks_2 * [/chart::[@wkn=’200400’]

/entry:[date:’16.12.2002’, value:’60’]:[]].

1: <stocks index="dax100">

<chart wkn="200400">

<entry date="14.12.2002" value="30">

[date:16.12.2002, value:60]:[]

</entry>

</chart>

...

</stocks>

28



7.3 Deletion

The following query deletes the assignment for the attribute value from the
entry element of 14.12.2002 of the chart element with the wkn 200400:

?- X := $Stocks_2 <-> [/chart::[@wkn=’600800’]

/entry::[@date=’14.12.2002’]@value] ].

1: <stocks index="dax100">

<chart wkn="200400">

<entry date="14.12.2002" value="30"/>

</chart>

<chart wkn="600800">

<entry date="14.12.2002"/>

<entry date="15.12.2002" value="50"/>

</chart>

</stocks>

8 Case Studies

Pl4Xml has been used in several projects dealing with Html or Xml docu-
ments.

Two major applications of FnTransform to Stock Data and to the Jean Paul
letters will be shortly sketched in this section. More detailed descriptions can
be found in [15] (Stock Data) and [18] (Jean Paul), respectively. Section 8.1
shows how Pl4Xml can be used for extracting stock data from Web pages;
the relevant stock information is located automatically in the document, such
that the extraction process becomes robust to certain changes of the document
structure over time. Section 8.2 describes the transformation and annotation of
linguistic content in the Jean Paul project.

Further linguistic data processing is currently done in the Adelung project,
which is mainly based on Definite Clause Grammars (DCGs) in addition to
FNGs. Moreover, we have applied FnQuery for the following purposes:

• for analysing and visualizing rule–based knowledge [17] from the diagnostic
expert system D3 [12],

• for reasoning about and for refactoring Prolog and Datalog rules [16],

• for managing complex structured biological knowledge about signalling
pathways, and

• for handling mathematical knowledge represented in the Xml languages
MathMl and OpenMath [9].

The case studies about rule–based knowledge, such as diagnostic rules or Pro-

log rules, are mainly based on FnQuery, i.e., there are no transformations

29



or updates. Also the case study for handling complex structured mathematical
knowledge is only based on FnQuery. The biological case study about signalling
pathways is heavily based on FnQuery and FnUpdate.

8.1 Extracting Stock Data from Web Pages

The structure of Web sites can change over time in a highly dynamic way, even
though their semantic contents stays the same. For example, a restructuring of
an Html page can insert further levels of nesting, such that certain information
will be found at a deeper level after the restructuring, or the names of certain
elements can be changed.

We have investiagted the Web site of a German company providing stock
information: http://www.finanztreff.de, and the Web site of the well–known
company Amazon: http://www.amazon.de. In both cases the goal was to
extract some information based on partial (i.e., incomplete) knowledge about
the structure of the Html pages.

Extraction of the Stock Table. The following rules can be used for extract-
ing stock data from an Html page. The relevant part of the Html document
with the stock data as well as its representation in field notation are given in the
appendix. The overall structure of the document is unknown, and it could also
vary over time. By looking at the Html page in the browser it can be seen that
the page contains a table, such that each row provides stock information about
a stock share, and that one of the rows contains the string “Boerse / WKN”.
An example of such a table is shown in Appendix A and in Figure 3.

The following rules find out where the string “Boerse / WKN” is located in
the document O, and they return the corresponding path and the table:

html_to_path_and_relevant_table(Html, Path, Table) :-

Table := Html/P1/T1,

html_table_tag(T1),

Xs := Table/P2/content::’*’,

member(’Boerse / WKN’, Xs),

\+ ( html_table_tag(T2), fn_path_contains(P2, T2) ),

Path = P1/T1/P2.

html_table_tag(Tag) :-

member(Tag, [’TABLE’, ’Table’, table]).

This method is very robust, since it will always find relevant paths under the
weak assumptions that we have made. Currently, the string “Boerse / WKN”
is found under the following path:

html/body/p/p/p/’Table’/’TR’/’TD’/table/’TBODY’/’TR’/’TH’

30



Observe, that the tag ’TBODY’ – as well as some other tags – was not present in
the original document; it was introduced by the Sgml parser of SWI–Prolog.
Surprisingly, the table that we are interested in is located within another table;
thus, it would not be enough to just look for a table in the document.

Figure 3: Stock Data in a WWW Browser

Pruning of the Stock Table. For further processing the stock table we use
the file stock.fng with the following FNG:

’TABLE’:_:[’TBODY’:Es] ---> table:Es.

’TH’:_:X ---> th:X.

’TR’:_:Es ---> tr:Es.

’TD’:_:X ---> td:X.

img:_:X ---> X.

’A’:_:X ---> X.

’FONT’:_:[X] ---> X.

’BR’:_:_ ---> br:[].

X ---> X.

The substitution rules were found by iteratively simplifying the structure of
the document. As long as the current result contained redundant elements or at-
tributes, these were deleted. Finally, complex elements such as “’FONT’:_:[X]”,
“td:[’A’:_:X]”, and “’TD’:_:X” were substituted by simpler ones, namely “X”
and “td:X”, respectively. The obtained results are shown in Appendix C.

Originally, we had started by deleting redundant attributes. But after delet-
ing enough redundant attributes a condensed result was obtained, which made
it possible to come up with the FNG above.

31



Figure 4: Graphical User Interface of FnQuery

8.2 Jean Paul

We have annotated and transformed letters from and to the well–known German
writer Jean Paul. We worked with Html files that had been obtained from the
original Microsoft Word documents. In the Web browser they looked like follows:

Figure 5: A Letter to Jean Paul

The Html file looks as follows, where we have made some suitable abbre-
viations to make the structure more visible: By <font ...> we abbreviate
<font face="Times New Roman" size="3">, and by <p ...> we abbreviate
<p style="margin-top:0;margin-bottom:0;">.

32



<html> ...

<body>

<p style="margin-bottom:0;">

<font ...><em>1. Von Erhard Friedrich Vogel.

Rehau, 6. Mai 1781, Sonntag </em></font></p> ...

<p ...><font ...>Ueberlieferung</font></p>

<p ...><font ...>H: BL, Eg. 2008. 1 Bl. 2, 1/2 S. </font></p> ...

<p ...><font ...>Erlaeuterungen</font></p>

<p ...><font ...>Erhard Friedrich Vogel,

am 17.&nbsp;November 1750 als aeltester Sohn des Bayreuther

Hofkammerrates Johann Achatius Vogel ... </font></p> ...

<p ...><font ...><em>1, </em>18-19

<strong>Gehen </strong> bis <strong>sind] </strong>

Dem folgenden Brief Vogels ist zu entnehmen, ... </font></p> ...

</body>

</html>

These Html documents have been transformed to Xml documents using a
micture of FNGs and Definite Clause Grammars (DCGs). A fragment of the
used FNG is shown in the following:

body:_:Es ---> comment:Es.

p:_:Es ---> notep:Es.

font:_:[X] ---> X.

em:_:Es ---> commentHead:Es :-

retract(letterHeadFlag).

em:_:Es ---> page:Es.

strong:_:Es ---> lemma:Es.

Observe that the first rule for em only fires, if there is a fact letterHeadFlag in
the Prolog database, which indicates that we are processing the head of the
letter. Subsequent em elements are transformed to page elements, since the fact
has been retracted.

<comment>

<notep>

<commentHead>1. Von Erhard Friedrich Vogel.

Rehau, 6. Mai 1781, Sonntag

</commentHead> </notep>

<ednote type="Ueberlieferung">

<notep>H: BL, Eg. 2008. 1 Bl. 2, 1/2 S.</notep> ... </ednote>

<ednote type="Erlaeuterungen"> ...

<notep>

<page>1,</page> 18-19

<lemma>Gehen</lemma> bis <lemma>sind]</lemma>

Dem folgenden Brief Vogels ist zu entnehmen, ...

</notep> </ednote>

</comment>

33



The structuring into <ednote type="Type"> for Type = Ueberlieferung" and
Type = "Erlaeuterungen" can be done using DCGs. Also a remark element
is formed using DCGs.

<note id="23">

<remark>

<position page="1" line="18-19"/>

<lemma>Gehen</lemma> <lemma>sind</lemma>

</remark>

Dem folgenden Brief Vogels ist zu entnehmen, ...

</note>

Finally, a presentation layer with navigation utilities was created using FnUpdate.

9 Conclusions and Future Work

Pl4Xml shows that techniques for processing and reasoning about complex
Xml documents can be integrated nicely into Prolog applications. Thus, it
becomes possible to formulate complex queries to Xml documents in a compact
and intuitive way. Instead of embedding an Xml query language into a procedu-
ral language, we propose a homogeneous framework for accessing, transforming
and reasoning about Xml documents in a declarative environment.

The first library FnQuery had been developed for Xml documents in field–
notation and later extended to graph notation. Currently, we are planning to
investigate optimzation techniques for the evaluation of queries and mixed data
representations that can alternate between field and graph notation.

Currently, the predicates of FnQuery are evaluated in a top–down and tuple–
oriented fashion using Prolog; for computing all answers to a query we use
backtracking. For more complicated rule systems containing recursive rules we
are planning to use set–oriented bottom–up evaluation as in Datalog.

References

[1] S. Abiteboul, P. Bunemann, D. Suciu: Data on the Web – From Relations
to Semi–Structured Data and Xml, Morgan Kaufmann, 2000.

[2] F. Bancilhon, S. Cluet, C. Delobel: Query Languages for Object–Oriented
Database Systems: the O2 Proposal, Proc. 2nd Intl. Workshop on Database
Programming Languages, 1989.

[3] J. Baumeister, D. Seipel, F. Puppe: Refactoring Methods for Knowledge
Bases, Proc. 14th International Conference on Engineering Knowledge in
the Age of the Semantic Web EKAW 2004, Springer, LNAI 3257, pp. 157-
171.

34



[4] J. Baumeister, D. Seipel: Smelly Owls – Design Anomalies in Ontolo-
gies, Proc. 18th International Florida Artificial Intelligence Research Soci-
ety Conference FLAIRS 2005, AAAI Press, 2005, pp. 215–220.

[5] T. Berners–Lee, J. Hendler, O. Lassila: The Semantic Web, Scientific
American, May 2001.

[6] F. Bry, S. Schaffert: Pattern Queries for Xml and Semistructured Data.
Proc. 17th Workshop Logische Programmierung, 2002.

[7] S. Ceri, G. Gottlob, L. Tanca: Logic Programming and Databases,
Springer, 1990.

[8] M. Gross–Hardt: Querying Concepts — An Approach to Retrieve Xml

Data by Means of their Data Types. Proc. 17th Workshop Logische Pro-
grammierung, 2002.

[9] B. Heumesser, D. Seipel, U. Güntzer: Flexible Processing of Xml Based
Mathematical Knowledge in a Prolog Environment, Proc. Intl. Conf. on
Mathematical Knowledge Management MKM’2003, Springer LNCS (to ap-
pear).

[10] M. Hopfner, D. Seipel, J. Wolff von Gudenberg: Comprehending and Vi-
sualising Software based on Xml–Representations and Call Graphs, Proc.
11th IEEE International Workshop on Program Comprehension IWPC
2003.

[11] M. Kifer, G. Lausen: F–Logic: A Higher–Order Language for Reasoning
about Objects, Proc. ACM SIGMOD Conference on Management of Data,
1989.

[12] P. Puppe et al.: D3. http://d3web.informatik.uni-wuerzburg.de/

[13] D. Seipel: DisLog – A Disjunctive Deductive Database Prototype, Proc.
12th Workshop on Logic Programming WLP 1997.

[14] D. Seipel: The DisLog Developers’ Kit (DDK),
http://www1.informatik.uni-wuerzburg.de/databases/DisLog

[15] D. Seipel: Processing Xml Documents in Prolog, Proc. 17th Workshop
on Logic Programming WLP 2002.

[16] D. Seipel, M. Hopfner, B. Heumesser: Analyzing and Visualizing Prolog
Programs based on Xml Representations. Proc. International Workshop
on Logic Programming Environments WLPE 2003.

[17] D. Seipel, J. Baumeister, M. Hopfner: Declarative Querying and Visualiz-
ing Knowledge Bases in Xml, Proc. 15th International Conference on Ap-
plications of Declarative Programming and Knowledge Management INAP
2004, pp. 140-151.

35



[18] D. Seipel, K. Prätor: Xml Transformations Based on Logic Programming.
Proc. 18th Workshop on Logic Programming WLP 2005, pp. 5–16.

[19] V. Vianu: A Web Odyssey: from Codd to XML, Proc. Intl. Conference on
Principles of Database Systems PODS’2001.

[20] J. Wielemaker: Swi–Prolog 5.0 Reference Manual,
http://www.swi-prolog.org/

[21] J. Wielemaker, A. Anjewierden: Programming in Xpce/Prolog,
http://www.swi-prolog.org/

[22] J. Wielemaker: Swi–Prolog Sgml/Xml Parser, Library Manual, 2002.

[23] Xml Query Requirements, Working Draft of the World Wide Web Consor-
tium (W3C), http://www.w3.org/TR/2001/WD-xmlquery-req-20010215.

36



Appendix A. Stock Data in Html

The following Html–table occurs deeply nested within the Html–document

http://www.finanztreff.de/portal/

kurse_index_listen.htm?u=0&p=0&k=0&symbol=DAX

<TABLE BORDER=0 CELLPADDING=2 cellspacing=2

WIDTH=693 BGCOLOR="#c6c6c6">

<TR>

<TH CLASS="hl">Bezeichnung<BR>Boerse / WKN</TH>

<TH CLASS="hl">Letzter<BR>Umsatz</TH>

<TH CLASS="hl">+/-<BR>%</TH>

<TH CLASS="hl">GUmsatz<BR>Trend</TH>

<TH CLASS="hl">Zeit<BR>Datum</TH>

<TH CLASS="hl">Bid<BR>Ask</TH>

<TH CLASS="hl">Vortag<BR>Erster</TH>

<TH CLASS="hl">Hoch<BR>Tief</TH>

<TH CLASS="hl">Kassa<BR>Volumen</TH>

</TR>

<TR>

<TD CLASS="wl">

<A HREF="javascript:var ...">Adidas-Salomon</A> <BR>

XETRA / 500340

</TD>

<TD CLASS="wr">

82,07

<img src="http://gfx.finanztreff.de/images/tw/1.gif"

alt="Kurs gegenber Vortag gestiegen"

width=11 height=10 border=0> <BR>

0

</TD>

<TD CLASS="wr">

<FONT SIZE="1" FACE="Verdana, Arial, Helvetica"

COLOR="#009900"> 1,57 </FONT> <BR>

<FONT SIZE="1" FACE="Verdana, Arial, Helvetica"

COLOR="#009900"> 1,95 </FONT>

</TD>

<TD CLASS="wr">550.706<BR>=-+=====</TD>

<TD CLASS="wr">21:15:17<BR>03.05.2002</TD>

<TD CLASS="wr">0,00<BR>0,00</TD>

<TD CLASS="wr">80,50<BR>80,00</TD>

<TD CLASS="wr">82,90<BR>80,00</TD>

<TD CLASS="wr">0,00<BR>45.196.441</FONT></TD>

</TR>

<TR> ... </TR>

...

</TABLE>

37



Appendix B. Pruned Stock Data

We have obtained the following pruned table. The first row contains the at-
tributes from the header of the original Html–table, and each subsequent row
contains the corresponding data for one stock share.

<table>

<tr>

<th> Bezeichnung <br/> Boerse </th>

<th> Letzter <br/> Umsatz </th>

<th> +/- <br/> % </th>

<th> GUmsatz <br/> Trend </th>

<th> Zeit <br/> Datum </th>

<th> Bid <br/> Ask </th>

<th> Vortag <br/> Erster </th>

<th> Hoch <br/> Tief </th>

<th> Kassa <br/> Volumen </th>

</tr>

<tr>

<td> Adidas-Salomon <br/> XETRA / 500340 </td>

<td> 82,07 <br/> 0 </td>

<td> 1,57 <br/> 1,95 </td>

<td> 550.706 <br/> =-+===== </td>

<td> 21:15:17 <br/> 03.05.2002 </td>

<td> 0,00 <br/> 0,00 </td>

<td> 80,50 <br/> 80,00 </td>

<td> 82,90 <br/> 80,00 </td>

<td> 0,00 <br/> 45.196.441 </td>

</tr>

...

</table>

By accumulating the data of several days we can obtain the following stock
charts:

<stocks index="dax100">

<chart wkn="500340" name="Adidas-Salomon">

<entry date="03.05.2002" value="82,07"/>

<entry date="06.05.2002" value="80,80"/>

<entry date="08.05.2002" value="84,85"/>

</chart>

<chart wkn="519000" name="BMW">

...

</chart>

...

</stocks>

38


